
Local solution for a class of mixed boundary value problems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys. A: Math. Gen. 36 9673

(http://iopscience.iop.org/0305-4470/36/37/306)

Download details:

IP Address: 171.66.16.86

The article was downloaded on 02/06/2010 at 16:34

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/36/37
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 36 (2003) 9673–9688 PII: S0305-4470(03)55599-8

Local solution for a class of mixed boundary value
problems

Mircea Grigoriu1 and Gennady Samorodnitsky2

1 School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
2 School of Operations Research and Industrial Engineering, Cornell University, NY 14843, USA

Received 6 November 2002, in final form 19 May 2003
Published 2 September 2003
Online at stacks.iop.org/JPhysA/36/9673

Abstract
A local method is developed for solving locally partial differential equations
with mixed boundary conditions. The method is based on a heuristic idea,
properties of diffusion processes, stopping times and the Itô formula for
semimartingales. According to the heuristic idea, the diffusion process used for
solving locally a partial differential with mixed boundary conditions is stopped
when it reaches a Neumann boundary and then restarted inside the domain of
definition of this equation at a point depending on the Neumann conditions.
The proposed method is illustrated and its accuracy assessed by two simple
numerical examples solving locally mixed boundary value problems in one and
two space dimensions.

PACS numbers: 02.60.Lj, 02.50.Ga

1. Introduction

Many problems in science and engineering can be described by deterministic partial differential
equations. Generally, these equations do not admit analytical solutions but can be solved
numerically [5]. Most available numerical methods, for example, the finite element, boundary
element and finite difference methods, are global, that is they determine the solution
everywhere or at a large number of points of a set D ⊂ R

d in which the solution is defined.
Some possible limitations of the traditional computational methods are (1) the computer codes
used for solution are relatively complex and may require extensive preprocessing to define a
particular problem in a specified format, (2) the numerical algorithms may become unstable
in some cases, (3) the errors caused by the discretization of the domain of integration and the
numerical integration methods used in analysis cannot be bounded, and (4) the field solution
must be calculated even if the solution is needed at a single point or a small collection of points
in D [1].

This paper develops an alternative method for solving a class of deterministic partial
differential equations with mixed boundary conditions. The method is local, that is it
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gives directly the value of the solution for some differential equations at an arbitrary point
in D, rather than extracting its value from the field solution, and is based on properties
of stochastic processes, Itô’s formula for semimartingales and Monte Carlo simulation.
Numerical algorithms based on the local solution in this paper are simple to program, always
stable, accurate, local and ideal for parallel computation. However, the proposed local solution
cannot solve partial differential equations of an arbitrary type.

The class of deterministic partial differential equations that can be solved by the method
in this paper has the form

d∑
i=1

αi(x)
∂u(x)

∂xi

+
1

2

d∑
i,j=1

βij (x)
∂2u(x)

∂xi∂xj

+ p(x) = 0 x ∈ D (1)

where D is an open subset of R
d , d � 1, with a compact closure D̄, αi, βij are real-

valued functions defined on D and p denotes a real-valued function defined on D. This class
of equations includes many problems in physics and engineering, for example, stationary
heterogeneous diffusion equations with drift and solid mechanics problems ([6], chapter 6).
It is assumed that p has a continuous extension to D̄, and the functions αi, βij also have
extensions to D̄ that are bounded and satisfy the uniform Lipschitz conditions. Two types of
boundary value problems are considered for equation (1), Dirichlet and mixed boundary value
problems. For Dirichlet problems the value of u is specified at all points of the boundary ∂D

of D, that is

lim
y→x,y∈D

u(y) = ξd(x) x ∈ ∂D (2)

where ξd is a known function. Local solutions for many Dirichlet boundary value problems are
discussed in [6] (sections 6.2.1 and 6.2.2), and only briefly reviewed in this paper. For mixed
problems u is specified only on a subset ∂Dd of ∂D but is not known on ∂Dn = ∂D\∂Dd .
The boundary conditions for these problems can be given in the form

lim
y→x,y∈D

u(y) = ξd(x) x ∈ ∂Dd

lim
y→x,y∈D

∇u(y) · c(y) = ξn(x) x ∈ ∂Dn

(3)

where ∇ = (∂/∂x1, . . . , ∂/∂xd) and c and ξn are prescribed R
d - and real-valued functions,

respectively. We assume that c has a continuous extension to D̄, and that with these boundary
conditions equation (1) has a solution u with bounded second-order partial derivatives in D̄.
The proposed local solution for mixed boundary value problems is general for D ⊂ R but
applies only to problems that admit a regular solution for D ⊂ R

d , d � 2. The extension of
the local solution to general mixed boundary value problems with D ⊂ R

d , d � 2 will be
addressed in a later work.

Consider an increasing sequence of smooth open subsets Dk , k = 1, 2, . . ., of D such that
D̄k ⊂ D and ∪∞

k=1Dk = D ([2], chapter 7). Then ρk = supx∈∂Dk
infy∈∂D ‖x − y‖ → 0 as

k → ∞. We can talk about Dirichlet and Neumann boundaries for Dk in the following sense.
For x ∈ ∂Dk let

∂D(x) =
{
y0 ∈ ∂D : inf

y∈∂D
‖ x − y ‖=‖ x − y0 ‖

}
and define

∂Dk,d = {x ∈ ∂Dk : ∂D(x) ∩ ∂Dd 	= ∅}
and ∂Dk,n = ∂Dk\∂Dk,d . Intuitively, ∂Dk,d and ∂Dk,n consist of points of ∂Dk that are closer
to ∂Dd than to ∂Dn and vice versa (figure 1). For x ∈ ∂Dk,d let yx be defined as the point
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Figure 1. Approximations of D.

in ∂D(x) ∩ ∂Dd with the smallest value of ξd (break ties in, say, lexicographical order) and,
similarly, for x ∈ ∂Dk,n we let yx be the point in ∂D(x) ∩ ∂Dn with the smallest value of ξn,
with similarly broken ties. Note that

lim
k→∞

sup
x∈Dk,d

|u(x) − ξd(yx)| = 0

lim
k→∞

sup
x∈Dk,n

|∇u(x) · c(x) − ξn(yx)| = 0.
(4)

It is assumed that Dk has only regular points, and that the set of points in ∂Dk where the
Dirichlet and Neumann boundaries meet is finite. Finally, we assume that the field c is such
that y + εc(y) ∈ Dk for all k large enough, ε > 0 small enough and all y ∈ ∂Dk,n. We say
that y ∈ ∂Dk is a regular point with respect to an R

d -valued process X if P(S = 0) = 1
when X(0) = y, where S = inf{t > 0 : X(t) /∈ Dk}.

The method for local solutions in the paper can be extended to solve partial differential
equations that generalize equation (1). For example, extended versions of equation (1) may
include terms of the form qu and ∂u/∂t ([6], chapter 6).

2. Dirichlet boundary value problems

Let u be the solution of equation (1) with the boundary condition in equation (2). The objective
is to find the value of the unknown function u at an arbitrary point x ∈ D, that is to solve
locally equation (1) with the boundary condition in equation (2).

Consider an R
d -valued diffusion process defined by the stochastic differential equation

dX(t) = a(X(t)) dt + b(X(t)) dB(t) t � 0 (5)

where ai(x) = αi(x), i = 1, . . . , d, b is such that β(x) = b(x)b(x)T for all x ∈ R
d and

B is an R
d -valued Brownian motion process whose coordinates are independent Brownian

motions. The solution of equation (5) exists and is unique by the properties of the coefficients
αi, βij of equation (1). Let

T = inf{t � 0 : X(t) /∈ D} (6)

be an F t = σ(B(s), 0 � s � t)-stopping time giving the first time when X starting at x ∈ D

exits D.
If Ex[T ] < ∞, then the local solution of equation (1) is

u(x) = Ex[ξd(X(T ))] + Ex

[∫ T

0
p(X(s)) ds

]
. (7)



9676 M Grigoriu and G Samorodnitsky

The above expectations can be obtained analytically only in some special cases. However,
they can be estimated simply by Monte Carlo simulation ([6], section 6.2.1.1).

That equation (7) holds results from the following arguments. Since X is a continuous
semimartingale, the Itô formula can be applied to a function g(X(t)), g ∈ C2(Rd), and gives

g(X(t)) − g(X(0)) =
∫ t

0

d∑
i=1

∂g(X(s))

∂xi

dXi(s) +
1

2

∫ t

0

d∑
i,j=1

∂2g(X(s))

∂xi∂xj

d[Xi,Xj ](s) (8)

where [Xi,Xj ] denotes the quadratic covariation process of Xi and Xj so that we have
d[Xi,Xj ](s) = (b(X(s))b(X(s))T )ij ds ([9], theorem 33, p 74). If X(0) = x ∈ D, the
expectation of equation (8) becomes

Ex[g(X(t))] − g(x) = Ex


 ∫ t

0

d∑
i=1

∂g(X(s))

∂xi

αi(X(s)) ds

+
1

2

∫ t

0

d∑
i,j=1

∂2g(X(s))

∂xi∂xj

βij (X(s)) ds


 (9)

by the properties of X . Since stopped semimartingales are semimartingales, equation (9)
holds for the stopped process XTk (t) = X(t ∧ Tk), t � 0, where t ∧ Tk = min(t, Tk) and

Tk = inf{t � 0 : X(t) /∈ Dk} k = 1, 2, . . . .

Also, the function g in equation (9) can be replaced by u in equation (1) since u has continuous
second-order partial derivatives in Dk . These changes implemented in equation (9) yield

u(x) = Ex[u(X(t ∧ Tk))] + Ex

[∫ t∧Tk

0
p(X(s)) ds

]
(10)

by the defining equation for u since X(s) ∈ D for s < t ∧Tk . It remains to show that the limit
of equation (10) as t → ∞ and then k → ∞ gives the local solution in equation (7). For a fixed
k the sequence V

(j)

k = u(X(j ∧ Tk)), j = 1, 2, . . . , is bounded by assumption and converges
a.s. to Vk = u(X(Tk)) as j → ∞. Hence, Ex

[
V

(j)

k

]
converges to Ex[Vk] = Ex[u(X(Tk))]

as j → ∞ by bounded convergence. Since the function p is assumed to be bounded in D̄ and
Ex[T ] < ∞, for a fixed k the sequence W

(j)

k = ∫ j∧Tk

0 p(X(s)) ds, k = 1, 2, . . . , is uniformly

integrable ([8], theorem C.3, p 295) and converges a.s. to Wk = ∫ Tk

0 p(X(s)) ds as j → ∞,

so that limj→∞ Ex
[
W

(j)

k

] = Ex[Wk] ([8], theorem C.4, p 296). Therefore, for every k we
have

u(x) = Ex[u(X(Tk))] + Ex

[∫ Tk

0
p(X(s)) ds

]
.

Since Tk ↑ T as k → ∞, we can let k → ∞ in the above relation and use the same arguments
as above to obtain equation (7).

3. Mixed boundary value problems

Consider equation (1) defined on an open bounded subset D with the mixed boundary
conditions in equation (3). The objective is to find the value of u(x) at an arbitrary point
x ∈ D. A heuristic method for finding the local solution is first presented. It is then
shown that the heuristic method provides accurate approximations for the local solution of
equation (1).
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Figure 2. Heuristic method.

3.1. Heuristic method

Let X be the diffusion process in equation (5) with X(0) = x ∈ D. The sample paths of
X can be divided into two groups, sample paths that reach ∂D for the first time at points
y ∈ ∂Dd and y ∈ ∂Dn, respectively. The contribution to the local solution of the samples
reaching ∂Dd is of the type in equation (7). The formula in equation (7) cannot be used to
find the contribution to the local solution of the samples reaching ∂Dn since u is not known
on ∂Dn. This contribution can be obtained by the following heuristic algorithm. First, apply
the Itô formula between x and y ∈ ∂Dn to relate the values of u at x ∈ D and y ∈ ∂Dn.
Second, reflect X , that is, shift y ∈ ∂Dn to a point x′ ∈ D by a selected amount in a direction
consistent with the Neumann boundary condition at y ∈ ∂Dn. Third, restart X at x′ ∈ D

and find the point where the restarted process reaches ∂D for the first time. If this point is on
∂Dd the sample of X is stopped because u is known on ∂Dd . Otherwise, the previous step is
repeated till the restarted process reaches ∂Dd .

Figure 2 illustrates the heuristic method. Let X0(·, ω) be the diffusion process in
equation (5) starting at x ∈ D. Suppose that X0 reaches the boundary of D for the first time
at Y (ω) ∈ ∂Dn. The point Y (ω) is reflected to X ′(ω) ∈ D such that X ′(ω) − Y (ω) =
εc(Y (ω)), where ε > 0 is a specified constant and c is defined in equation (3). Let X1(s, ω),
s � 0, be a sample of X in equation (5) starting at X ′(ω) ∈ D. Suppose that X1(·, ω)

reaches ∂D for the first time at Y ′(ω) ∈ ∂Dd . The relationship between the values of u at x
and Y (ω) is (equation (7))

u(x, ω) = u(Y (ω)) +
∫ S(ω)

0
p(X(s, ω)) ds

where S(ω) denotes the time it takes the sample X starting at x to reach Y (ω). The values
of u at Y (ω) and X ′(ω) can be related by

u(Y (ω)) � u(X ′(ω)) − ε∇u(Y (ω)) · c(Y (ω)) = u(X ′(ω)) − εξn(Y (ω))
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where the first approximate equality is adequate for a small ε and the last equality is
the boundary condition in equation (3). The local solution in equation (7) also gives the
relationship

u(X ′(ω)) = ξd(Y
′(ω)) +

∫ S1(ω)

0
p(X1(s, ω)) ds

where X1 is defined by equation (5) with the initial value X ′(ω) and S1(ω) denotes the time it
takes a sample of this process to reach Y ′(ω). The above equations show that the contribution
to the local solution of the sample in figure 2 can be approximated by

u(x, ω) � ξd(Y
′(ω)) − εξn(Y (ω)) +

∫ S(ω)

0
p(X(s, ω)) ds +

∫ S1(ω)

0
p(X1(s, ω)) ds.

The unknown value of u(x) can be estimated by the arithmetic average of samples u(x, ω)

generated by the Monte Carlo simulation.

3.2. Exact method. Laplace equation for D ⊂ R

Let u be the solution of the differential equation

u′′(x) + p(x) = 0 x ∈ (0, 1) (11)

where p ∈ C[0, 1] and u′(0), u(1) are specified. The objective is to find the local solution
for equation (11), that is the value of u at an arbitrary x ∈ (0, 1) satisfying the boundary
conditions limx→0,x∈(0,1) u′(x) = u′(0) and limx→0,x∈(0,1) u(x) = u(1).

Let B(t), t � 0, be a Brownian motion starting at B(0) = x ∈ (0, 1), and choose
a kth approximating domain Dk = (ck, dk) of (0, 1) such that x ∈ Dk , the differences
under the limits in equation (4) are small, and dk − ck > ε, for some ε ∈ (0, 1).
Define a sequence of random times U1 = inf{t � 0 : B(t) = ck} and for n � 2,
Un = inf{t � 0 : B(t) = ck − (n − 1)ε}. The sequence U1, U2, . . . should be denoted
by Uk,1, Uk,2, . . . since it depends on k, but the index k is suppressed for simplicity. Consider
the process Yε(t) = B(t) + Lε(t), t � 0, where

Lε(t) = ε
∑
n�1

1(Un � t) (12)

and let Tk = inf{t � 0 : Yε(t) = ck} be the first time when Yε reaches the Dirichlet boundary
x = ck . Denote by

N(k)
ε (t) = sup{n � 0 : Un � t} (13)

the number of jumps of Lε and Yε in (0, t].
Since p and u are bounded in [0, 1], the local solution of equation (11) is

u(x) = u(dk) +
1

2
Ex

[∫ Tk

0
p(Yε(s)) ds

]
− (u(ck + ε) − u(ck))E

x
[
N(k)

ε (Tk)
]

(14)

and Ex
[
N(k)

ε (T )
] = (dk − x)/(ε − ck).

The validity of equation (14) results from the following considerations. First, the random
variables Tk and U1 � U2 � · · · are Ft = σ(B(s), 0 � s � t)-stopping times. Second, the
process Yε is an Ft -semimartingale since B is a martingale with respect to its natural filtration
and Lε is an Ft -adapted process with increasing samples that are right continuous with left
limits, so that it is a semimartingale ([9], theorem 1, p 88). The Itô formula for semimartingales
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applied to g(X), g ∈ C2(R), gives ([9], theorem 32, p 71)

g(Yε(t)) − g(Yε(0)) =
∫ t

0+
g′(Yε(s−)) dYε(s) +

1

2

∫ t

0+
g′′(Yε(s−)) d[Yε, Yε]c(s)

+
∑

0<s�t

[g(Yε(s)) − g(Yε(s−)) − g′(Yε(s−))	Yε(s)]

where [Yε, Yε]c is the continuous part of the quadratic variation of Yε so that d[Yε, Yε]c(s) = ds

and 	Yε(s) = Yε(s) − Yε(s−) denotes the jump of Yε at time s. An alternative form of the
above equation is

g(Yε(t)) − g(Yε(0)) =
∫ t

0+
g′(Yε(s−)) dB(s) +

1

2

∫ t

0+
g′′(Yε(s−)) ds

+
∑
Un�t

[g(Yε(Un)) − g(Yε(Un−))] (15)

where
∑

Un�t [g(Yε(Un)) − g(Yε(Un−))] = (g(ck + ε) − g(ck))N(k)
ε (t) since the jumps of Yε

have magnitude ε. Since Yε is a semimartingale so is the stopped process Y Tk
ε (·) = Yε(· ∧ Tk)

so that t can be replaced by t ∧ Tk in the above equation. Also, since u in equation (11) has
a continuous second-order derivative in D, equation (15) holds with u in place of g. These
changes implemented in equation (15) give, as long as x ∈ Dk ,

u(x) = Ex[u(Yε(t ∧ Tk))] +
1

2
Ex

[∫ t∧Tk

0
p(Yε(s)) ds

]
− (u(ck + ε) − u(ck))E

x
[
N(k)

ε (t ∧ Tk)
]

(16)

by averaging and using the defining equation for u, which holds for points Yε(s) with
s < t ∧Tk . The integral

∫ t∧Tk

0+ u′′(Yε(s−)) ds is equal a.s. to
∫ t∧Tk

0 u′′(Yε(s)) ds since the set of
jumps of Yε in [0, t ∧Tk] has measure 0. Letting, as in the previous section, t → ∞ establishes
equation (14).

We now compare the exact solution above with the approximate local solution by the
heuristic method in the previous section. Note that because of homogeneity of the Brownian
motion, we could define the times Un through the original process B instead of the process Yε.
We will not be able to do this in general, as will be seen in the next sections. The approximate
local solution is

ũ(x) = u(1) +
1

2
Ex

[∫ T

0
p(Yε(s)) ds

]
− εu′(0)Ex[Nε(T )] (17)

so that

|ũ(x) − u(x)| � |u(dk) − u(1)| +
1

2

∣∣∣∣Ex

[∫ T

Tk

p(Yε(s)) ds

]∣∣∣∣
+ |u(ck + ε) − u(ck) − εu′(ck)|Ex

[
N(k)

ε (Tk)
]

+ ε
∣∣u′(0)Ex[Nε(T )] − u′(ck)E

x
[
N(k)

ε (Tk)
]∣∣ (18)

where T and Nε(T ) are defined as Tk and N(k)
ε (T ), respectively, but with interval (0, 1)

replacing (ck, dk). Choosing k so large that the first, second and fourth terms in the right-hand
side above have the order of magnitude ε, and using the fact that

|u(ck + ε) − u(ck) − εu′(ck)|Ex
[
N(k)

ε (Tk)
] ∼ cε2

for some constant c, we conclude that |ũ(x) − u(x)| is of order ε.
Figure 3 shows the exact solution of equation (11) with p(x) = 1, u′(0) = 1 and u(1) = 1,

and the approximate solution ũ in equation (17) for ε = 0.1. The expectations in this equation
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Figure 3. Exact and approximate solutions.

have been estimated from n = 100 independent samples of Yε generated with time steps
	t = 0.001 and 	t = 0.0005. The resulting local solution is in error by less than 10%.
The performance of the local solution can be improved by increasing the sample size and/or
decreasing the time step. For example, if the sample size is increased to n = 500, the error
of the local solution is less that −4.5% and 0.0356% for 	t = 0.001 and 	t = 0.0005,
respectively.

The local solution of equation (11) in equation (14) can be expressed in another way. For
example, let

Z(t) = |B(t)| = B̂(t) + L(t) t � 0 (19)

be a Brownian motion reflected at zero, where L(t) = limε↓0 1/(2ε)
∫ t

0 1(B(s) ∈ (−ε, ε)) ds

is the local time process and B̂ denotes a Brownian motion ([3], theorem 7.6, p 150). The Itô
formula applied to u(Z(t)) with Z(0) = x gives

u(x) = u(1) +
1

2
Ex

[∫ T ∗

0
p(Z(s)) ds

]
− Ex

[∫ T ∗

0
u′(Z(s)) dL(s)

]
(20)

where T ∗ = inf{t � 0 : Z(t) = 1}.
The local solutions in equations (14) and (20) are exact so that they must coincide since

equation (11) has a unique solution. However, equation (14) cannot be used to calculate
u(x), x ∈ (0, 1), since it depends on the unknown values u(0) and u(ε) of u. In contrast,
the local solution in equation (20) can be used to calculate u(x) at any point x ∈ (0, 1).
Unfortunately, the approach used to establish equation (19) cannot be extended simply
to solve locally partial differential equations of the type in equation (1) for arbitrary sets
D ⊂ R

d , d > 1. Practical results can only be found in some special cases ([3], chapter 8).
Therefore, approximations of the type in equation (17) need to be developed for solving
equation (1) locally. The following sections consider differential equations more general
than equation (11), develop approximate local solutions for these equations and establish the
accuracy of these resulting approximate local solutions.
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3.3. Exact method. General equation for D ⊂ R

Suppose that u is the solution of the differential equation

a(x)u′(x) + 1
2b(x)2u′′(x) + p(x) = 0 x ∈ (0, 1) (21)

where p ∈ C[0, 1], a, b are bounded functions in [0, 1] satisfying the uniform Lipschitz
conditions. We assume that the function b is bounded away from zero in a neighbourhood of
zero, which implies that u′′(x) is bounded in a neighbourhood of zero. The objective is to find
the local solution of equation (21) for the boundary conditions limx→0,x∈(0,1) u′(x) = u′(0)

and limx→0,x∈(0,1) u(x) = u(1), where u′(0) and u(1) are specified.
Let X be a diffusion process defined by the stochastic differential equation

dX(t) = a(X(t)) dt + b(X(t)) dB(t) t � 0. (22)

Take a sub-domain Dk as before (here, as in the previous section, it can be just a subinterval
(ck, dk) of (0, 1) with the same requirements) and let U1 = inf{t � 0 : X(t) = ck} be the first
time when X reaches the boundary x = ck . If U1 = ∞, define Un = ∞, n � 2. Otherwise,
U2 � U1 denotes the first time when X restarted at X(U1) = ε reaches x = 0, where ε ∈ (0, 1)

is arbitrary. The random times U3 � U4 � · · · are defined in the same way. It is assumed that
the point dk is an accessible boundary for X.

Consider also a process Yε defined by the differential equation

dYε(t) = a(Yε(t−)) dt + b(Yε(t−)) dB(t) + dLε(t) t � 0 (23)

where B is the Brownian motion in equation (22) and

Lε(t) = ε
∑
n�1

1(Un � t). (24)

Let N(k)
ε (t) = sup{n � 0 : Un � t} be the number of jumps of Yε in (0, t] and denote by

Tk = inf{t � 0 : Yε(t) = dk} (25)

the first time when Yε reaches the Dirichlet boundary x = dk . Figure 4 shows hypothetical
samples of the processes Yε and Lε defined by equations (23) and (24).

If Ex[Tk] is finite (in particular, the probability that Yε hits dk before ck must be strictly
positive), then the local solution for equation (21) is

u(x) = u(dk) + Ex

[∫ Tk

0
p(Yε(s)) ds

]
− (u(ck + ε) − u(ck))E

x
[
N(k)

ε (Tk)
]
. (26)

The following arguments, similar to what we used above, prove equation (26). First, note
that the random times U1, U2, . . . are Ft = σ(B(s), 0 � s � t)-stopping times. That U1 is an
Ft -stopping time follow from its definition. Let X1(s), s � 0, be a diffusion process defined
by {

dX1(s) = a(X1(s)) ds + b(X1(s)) dB1(s) s � 0
X1(0) = ck + ε,

where B1(t) = B(U1 + t) − B(U1), t � 0. By the strong Markov property of the Brownian
motion, B1 is a Brownian motion with respect to the filtration Ht = FU1+t , t � 0 ([4],
proposition 1.4, p 52). Therefore, X1(s), s � 0, is a diffusion process adapted to Ht . Denote
by U ′

2 = inf{s � 0 : X1(s) = 0} the first time X1 reaches the boundary x = 0. Then U ′
2 is

an Ht -stopping time, so that U2 = U1 + U ′
2 is an Ft -stopping time. Similar arguments can be

used to show that U3, U4, . . . are Ft -stopping times. Second, the process Lε in equation (24) is
a semimartingale with respect to the filtration Ft since it has increasing samples that are right
continuous with left limits and 0 � U1 � U2 � · · · are Ft -stopping times. Consequently, the
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 Lε(t) 
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Figure 4. Processes Yε and Lε .

process Yε in equation (23) is also a Ft -semimartingale ([9], section V.3). The samples of Yε

have jumps of magnitude ε at each time Un. The Itô formula for semimartingales applied to
g(Yε(t)), g ∈ C2(R), gives

g(Yε(t)) − g(Yε(0)) =
∫ t

0+
g′(Yε(s−)) dYε(s) +

1

2

∫ t

0+
g′′(Yε(s−)) d[Yε, Yε]c(s)

+
∑

0<s�t

[g(Yε(s)) − g(Yε(s−)) − g′(Yε(s−))	g(Yε(s))]

or

g(Yε(t)) − g(Yε(0)) =
∫ t

0+
g′(Yε(s−))[a(Yε(s−)) ds + b(Yε(s−)) dB(s)]

+
1

2

∫ t

0+
g′′(Yε(s−))b(Yε(s−))2 ds +

∑
Un�t

[g(Yε(Un)) − g(Yε(Un−))] (27)

because
∫ t

0+ g′(Yε(s−)) dLε(s) = ∑
0<s�t g′(Yε(s−))	g(Yε(s)) and the continuous part of

the quadratic variation of Yε is d[Yε, Yε]c(s) = b(Yε(s−))2 ds. Since stopped semimartingales
are semimartingales, equation (27) holds if t is replaced by t ∧ Tk . Also, the function g can
be replaced by u since this function has a continuous second-order derivative inside D. The
expectation of equation (27) with t ∧ Tk and u in place of t and g, respectively, is

Ex[u(Yε(t ∧ Tk))] − u(x)

= −Ex

[∫ t∧Tk

0
p(Yε(s)) ds

]
+ Ex


 ∑

Un�t∧Tk

(u(Yε(Un)) − u(Yε(Un−)))




= −Ex

[∫ t∧Tk

0
p(Yε(s)) ds

]
+ ε(u(ck + ε) − u(ck))E

x
[
N(k)

ε (t ∧ Tk)
]

(28)

by using equation (21) since Yε(s) is in (0, 1) for s < t ∧ Tk and the arguments applied to
write equation (16). Third, the limit of equation (28) yields the local solution in equation (26)
by considerations as in the previous section.
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The local solution by the heuristic method,

ũ(x) = u(1) + Ex

[∫ T

0+
p(Yε(s−)) ds

]
− εu′(0)Ex[Nε(T )] (29)

differs from the solution in equation (26) by

|ũ(x) − u(x)| � |u(dk) − u(1)| +
1

2

∣∣∣∣Ex

[∫ T

Tk

p(Yε(s)) ds

]∣∣∣∣
+ |u(ck + ε) − u(ck) − εu′(ck)|Ex[Nε(Tk)]

+ ε|u′(0)Ex[Nε(T )] − u′(ck)E
x[Nε(Tk)]| (30)

and with the same choice of k as before we see that

|ũ(x) − u(x)| � const ε + |u(ck + ε) − u(ck) − εu′(ck)|Ex
[
N(k)

ε (T )
]
. (31)

For notational simplicity we derive a bound on Ex [Nε(T )] instead. Let q(ξ) denote
the probability that the diffusion process X in equation (22) starting at ξ ∈ (0, 1) reaches
the boundary x = 1 prior to x = 0. Then Nε(T ) = 0, 1, . . . , m, . . . with the probabilities
q(x), (1 − q(x))q(ε), . . . , (1 − q(x))(1 − q(ε))m−1q(ε), . . . , respectively, so that

Ex[Nε(T )] = (1 − q(x))

∞∑
m=1

m(1 − q(ε))m−1q(ε) = 1 − q(x)

q(ε)
. (32)

The probability q(x) satisfies the ordinary differential equation

a(x)q ′(x) + 1
2b(x)2q ′′(x) = 0 (33)

with the boundary conditions q(0) = 0 and q(1) = 1 ([7], section 15.3), so that

q(x) = α

∫ x

e−ρ(y) dy + β = αϕ(x) + β (34)

where ρ(y) = ∫ y[2a(σ )/b(σ )2] dσ and α, β are some constants. Since q must satisfy the
boundary conditions q(0) = 0 and q(1) = 1, we have

q(x) = ϕ(x) − ϕ(0)

ϕ(1) − ϕ(0)
.

For example, this probability is q(ξ) = (
1 − e−2c1ξ/c2

2
)/(

1 − e−2c1/c
2
2
)

and q(ξ) = ξ−2c1/c
2
2+1

for u defined by equation (21) with a(x) = c1, b(x) = c2 and a(x) = c1x, b(x) = c2x,
respectively, where c1, c2 are some constants. For a finite limit limy→0 ρ(y), if ε > 0
is small, the probability q(ε) can be approximated by ε exp(−ρε)/(ϕ(1) − ϕ(0)) so that
Ex[Nε(T )] ∼ O(ε−1) (equation (32)). As long as u has a bounded second derivative in
D, the difference between the exact and the heuristic local solutions is of order ε as ε ↓ 0
(equation (31)), and the first (but not the second) example above has this property.

3.4. Exact method. General equation for D ⊂ R
d

Consider the solution u of equation (1) in Dk for some k � 1 (figure 1) with the boundary
conditions in equation (4). Let X be the R

d -valued diffusion process in equation (5) with the
initial condition X(0) = x ∈ Dk , and let 0 � U1 � U2 � · · · be a sequence of random times
defined as follows. U1 = inf{t � 0 : X(t) ∈ ∂Dk,n} is the first time when X reaches ∂Dk,n.
If U1 = ∞, all the times Un, n � 2, are also taken to be infinity. Otherwise, U2 � U1 is the
first time when X restarted at X(U1) + εc(X(U1)) ∈ Dk reaches ∂Dk,n. The random times
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Yε(U–
n
 )

  Yε(Un
 ) ∈ D 

ε c (Yε(Un
– )) 

Figure 5. The jumps of Yε .

U3, U4, . . . are defined in the same way. Consider also the R
d -valued process Y ε(t), t � 0,

defined by the differential equation

dY ε(t) = a(Y ε(t−)) dt + b(Y ε(t−)) dB(t) + dLε(t) t � 0 (35)

with the initial condition Y ε(0) = x ∈ D, where

Lε(t) = ε
∑
n�1

1(Un � t) c(Y ε(Un−)). (36)

Figure 5 illustrates the jump of Y ε in equation (35) at Un. Let N(k)
ε (t) = sup{n � 0 : Un � t}

be the number of jumps of Y ε in (0, t] and denote by

Tk = inf{t � 0 : Y ε(t) ∈ ∂Dk,d} (37)

the first time when Y ε reaches ∂Dk,d .
If the expectations Ex[Tk] and Ex

[
N(k)

ε (Tk)
]

are finite, then the local solution for
equation (1) is

u(x) = Ex[u(Y ε(Tk))] + Ex

[∫ Tk

0
p(Y ε(s)) ds

]

−Ex


 ∑

Un�Tk

(u(Y ε(Un) − u(Y ε(Un−))


 . (38)

Arguments as in the previous sections can be used to prove equation (38). First, note
that U1 is an Ft = σ(B(s), 0 � s � t)-stopping time by its definition. If U1 is finite,
B1(s) = B(U1 + s) − B(U1), s � 0, is a Brownian motion with respect to the filtration
FU1+t , t � 0, by the strong Markov property of B. Hence, X1 defined by{

dX1(s) = a(X1(s)) ds + b(X1(s)) dB1(s) s � 0

X1(0) = X(U1) + εc(X(U1))

is a diffusion process with respect to the same filtration. Defining the random time
U ′

2 = inf{s � 0 : X1(s) ∈ ∂Dk,n} we conclude, as above, that U2 = U1 + U ′
2 is an

Ft -stopping time. The subsequent times Un, n � 3, are defined in the same way, and are
Ft -stopping time. Similarly, the random variable Tk in equation (37) is an Ft -stopping time.
Second, the process Lε in equation (36) is an Ft -semimartingale since it is Ft -adapted, has
right continuous samples with left limits, and is of bounded variation on compacts ([9],
theorem 7, p 47). Hence, Y ε in equation (35) is also an Ft -semimartingale ([9], section V.3).
The multidimensional Itô formula ([9], theorem 33, p 74) applied to g(Y ε(t)), g ∈ C2(Rd),
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gives

Ex[g(Y ε(t))] − g(x) = Ex


 ∫ t

0+

d∑
i=1

∂g(Y ε(s−))

∂yi

ai(Y ε(s−)) ds

+
1

2

∫ t

0+

d∑
i,j=1

∂2g(Y ε(s−))

∂yi∂yj

(b(Y ε(s−))b(Y ε(s−))T )ij ds




+ Ex


∑

Un�t

(g(Y ε(Un)) − g(Y ε(Un−)))




after some calculations and averaging. The above equation also holds if t and g are replaced
by t ∧Tk and the solution u of equation (1), respectively. These modifications and the defining
equation for u give

u(x) = Ex[u(Y ε(t ∧ Tk))] + Ex

[∫ t∧Tk

0+
p(Y ε(s−)) ds

]

−Ex


 ∑

Un�t∧Tk

(u(Y ε(Un)) − u(Y ε(Un−)))


 .

Third, it remains to show that the limit of the above equation as t → ∞ yields equation (38).
The first two terms on the right-hand side of the above equation converge to the corresponding
terms in equation (38) by bounded convergence and properties of uniformly integrable random
variables. Since Ex

[
N(k)

ε (Tk)
]

is finite, then the last term on the right side of the above equation
converges to Ex

[∑
Un�Tk

(u(Y ε(Un))−u(Y ε(Un−)))
]

as t → ∞ by dominated convergence.
The heuristic solution ũ(x) of section 3 applied to the approximating domain Dk is

ũ(x) = Ex
[
ξd

(
yY ε(Tk)

)]
+ Ex

[∫ Tk

0
p(Y ε(s)) ds

]

− εEx


 ∑

Un�Tk

∇ (
ξn(yY ε(Un−)

) · c(Y ε(Un−)),


 (39)

where yY ε(Tk) has the same meaning as yx in section 1.
If the function u has bounded second derivatives in the domain D, then the same argument

as before tells us that for k large enough the difference between the exact and the heuristic
local solution ũ(x) in equation (39) and equation (38) is

|ũ(x) − u(x)| � ζε2Ex
[
N(k)

ε (Tk)
]

(40)

where ζ > 0 is a finite constant.
The solution of equation (1) in Dk with the boundary conditions in equation (4) rather

than in D with the conditions in equation (3) adds to the error of the proposed solution. It is
expected that the resulting error is small for sufficiently large values of k. The magnitude of
this error is not examined in the paper. Similar approximations are common, for example, in
the finite element method, in which D is approximated by a collection of non-overlapping sets
with specified geometry, called finite elements. Generally, the union of the finite elements
used to represent D does not coincide with D.
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Figure 6. A rectangular domain D for equation (1) with d = 2.

3.5. Example: D = (a1, b1) × (a2, b2) ⊂ R
2

It is difficult to obtain the expression or even the order of Ex
[
N(k)

ε (Tk)
]

in equation (40) for
a general setting. However, interesting results can be obtained in some special cases. For
example, consider a rectangular domain D = (a1, b1) × (a2, b2), 0 � a1 < b1, 0 � a2 < b2,
in R

2 whose horizontal and vertical sides are Dirichlet and Neumann boundaries, respectively.
To simplify notation, we use D in our discussion rather than a subset Dk of D (equation (4)).
It is shown that for ε > 0 the process Y ε reaches a Dirichlet boundary of D with a sufficiently
large probability so that Ex [Nε(T )] is at most of order ε−1. Let Cε ⊂ D be a simple curve
connecting the horizontal boundaries of D such that the segment {a1 + ε} × (b1, b2) is left of
Cε (figure 6). Let q(x) be the probability that X starting at x ∈ (a1, a2) × (b1, b2) hits the
Dirichlet boundary (a1, a2) × {b1, b2} before reaching the Neumann boundary {a1, a2} ×
(b1, b2). The process Z(t) = exp(hX1(t)), t � 0, is an Ft -semimartingale so that

dZ(t) = h ehX1(t) dX1(t) +
h2

2
ehX1(t) d[X1, X1](t)

= m(X(t)) dt + h ehX1(t)(b11(X(t)) dB1(t) + b12(X(t)) dB2(t)) (41)

by the Itô formula, where

m(x) = h ehx1

(
a1(x) +

h

2
(b11(x)2 + b12(x)2)

)
. (42)

Assume that

(1) infx∈D(b21(x)2 + b22(x)2) > 0 so that θ = infx∈{(a1+a2)/2}×(b1,b2) q(x) > 0, that is there is
diffusion in the x2-direction at any point x ∈ D and

(2) γ = infx∈D(b11(x)2 + b12(x)2) > 0 so that m(x) � 0 for all x ∈ D if h �
max(0,−2µ/γ ), where µ = infx∈D a1(x).

Under the latter assumption Z(t), t � 0, is an Ft -submartingale since it is Ft = σ(B(s), 0 �
s � t)-adapted, has a finite expectation for each t � 0, and

E[dZ(t) | Ft ] = m(X(t)) dt + hZ(t)(b11(X(t))E[dB1(t)] + b12(X(t))E[dB2(t)])

= m(X(t)) dt � 0.

Suppose that X starts at a point x = (x1, x2) ∈ D and let T̂ be an arbitrary Ft -stopping time,
such that Z(t ∧ T ), t � 0, is uniformly integrable. Then

ehX1(0) = ehx1 = Z(0) � Ex[Z(T̂ )] (43)
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by the optional stopping theorem ([4], theorem 2.13, p 61). For

T̂ = inf{t � 0 : X1(t) = a1 or X1(t) = (a1 + a2)/2} (44)

and X(0) = x ∈ Cε we have (equation (43))

eh(a1+ε) � ehX1(0) = ehx1 = Z(0) � Ex[Z(T̂ )].

Let q∗(x) denote the probability that X starting at x ∈ (a1, (a1 + a2)/2) × (b1, b2) reaches
the vertical line {(a1 +a2)/2}×R dividing D in two halves prior to {a1}×R. The expectation,

Ex[Z(T̂ )] = eh(a1+a2)/2q∗(x) + eha1(1 − q∗(x))

and the above equation give eh(a1+ε) � Z(0) � eh(a1+a2)/2q∗(x) + eha1(1 − q∗(x)) so that

q∗(x) � eh(a1+ε) − eha1

eh(a1+a2)/2 − eha1
� c0ε (45)

where c0 > 0 is a constant. Since q(x) � q∗(x)θ , we have q(x) � c0εθ for any x ∈ Cε.
An inductive argument shows that P(Tn < T ) � (1 − c0εθ)n−1 for any n � 1. Hence the
expectation of the number of jumps Nε(T ) of Y ε in [0, T ] is at most 1/(c0εθ) since

E[Nε(T )] =
∞∑

n=1

P(Tn < T ) �
∞∑

n=1

(1 − c0εθ)n−1 = 1

c0εθ
.

The above method has been used to solve locally the partial differential equation

∂2u(x1, x2)

∂x2
1

+ 3
∂2u(x1, x2)

∂x2
2

= −16 (x1, x2) ∈ D = (0, 1) × (0, 1)

with the mixed boundary conditions u(x1, 1) = −3.5349x2
1 +0.5161x1 +3.0441, u(1, x2) = 0,

∂u/∂x1 = 0 on {0} × (0, 1), and ∂u/∂x2 = 0 on (0, 1) × {0}. The R
2-valued

diffusion process X = (B1,
√

3B2) is used to find u at arbitrary points in D, where B1

and B2 are independent Brownian motions. The results by the local solution with ε = 0.01
and ns = 5000 samples of X generated with a time step 	t = 0.005 are within 3% of the
finite difference solution at the tested points in D. The local solutions at points in D relatively
far from Neumann boundaries do not seem to be sensitive to the particular value of ε, but they
depend on ε at points close to Neumann boundaries. For example, the difference between the
local and finite difference solutions at (0.25, 0.25) is 10.75%, 6.35% and 1.10% for ε = 0.1,
0.05 and 0.01, respectively, for 	t = 0.005 and ns = 5000.

4. Comments

Methods based on properties of diffusion processes and the Itô formula for continuous
semimartingales have been applied successfully to solve locally a broad class of partial
differential equations with Dirichlet boundary conditions. The extension of these methods
to the local solution of partial differential equations with mixed boundary conditions poses
significant difficulties since the solution is not known at all boundary points. This paper has
developed a method for solving locally a class of partial differential equations with mixed
boundary conditions. The method is based on a heuristic idea according to which the diffusion
process used for solving a partial differential equation is stopped when it reaches a Neumann
boundary and then restarted inside the domain of definition of the equation at a point depending
on the Neumann conditions. Properties of diffusion processes, submartingales, and stopping
times, and the Itô formula for semimartingales are used to prove the validity of the proposed
local method. The proposed method can be applied to solve locally any one-dimensional
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mixed boundary value problem. For higher dimensional mixed boundary value problems the
method is valid only for a restricted class of problems that admit regular solutions.

Two simple examples have been presented to illustrate the local method in the paper.
Numerical results show that the method is accurate. The expectations in the expression of the
local method have been estimated by Monte Carlo simulation. The numerical algorithms for
solution are simple to program and ideal for parallel computation.
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